Low response to the neutralizing anti-RBD antibodies to heterologous Soberana 02/Soberana Plus diagram and safety data
Palabras clave:
vaccines, anti-COVID vaccines, neutralizing antibodies, SARS-CoV-2Resumen
Introduction: Sovereign immunogens have been key in controlling COVID-19 in Cuba. The study of suboptimal response is a crucial step in reducing the risks of immunization strategies in the face of pandemics.
Objetive: To characterize the suboptimal response of neutralizing anti-RBD antibodies and documented security profile.
Methods: A analytical observational and differentiated analysis study was carried out in 59 patients with suboptimal responses and immunized with the heterologous Soberana02/ SoberanaPlus scheme, vaccinated between March-May 2021 in Santiago de Cuba. A molecular virus neutralization test was used at a serum dilution of 1/100. A ˂70 % RBD-ACE2 binding inhibition response was managed as a suboptimal humoral response, while a ˂30 % response was managed as a critical humoral response.
Results: The arithmetic mean of the RBD-ACE2 binding inhibition response was 40.74 %. For a suboptimal humoral response, the lowest proportion of subjects was in the control group compared to the vaccinated group: 40 % vs. 22 % (p=0.000*). For a critical humoral response, the lowest proportion of subjects was in the vaccinated group 8 % vs. 30 % (p=0.000*). No serious adverse events were reported in vaccinated patients. Two types of adverse events were reported, with no definitive causal relationship and of mild intensity: pain at the injection site (46.6 %) and increased blood pressure (20 %).
Conclusions: The immunization scheme studied, under real-world conditions, was consistent with the results of clinical trials regarding the potent inhibitory antibody response, with an adequate safety profile.
Descargas
Citas
1. Valdes Balbin Y, Santana Mederos D, Paquet F, Fernandez S, et al. Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines. ACS Cent Sci. 2021[cited 20/01/2022];7(5):757-67. Available at : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084267/
2. Valdes Balbin Y, Santana Mederos D, Quintero L, Fernández S, Rodríguez L, Sánchez Ramírez B, et al. SARS-CoV-2 RBD-Tetanus Toxoid Conjugate Vaccine Induces a Strong Neutralizing Immunity in Preclinical Studies. ACS Chemical Biology. 2021[cited 20/01/2022];16(7):1223-33. Available at: https://hal.archives-ouvertes.fr/hal-03443835
3. Arashkia A, Jalilvand S, Mohajel N, Afchangi A, Azadmanes A, Salehi Vasiri M, et al. Severe acute respiratory syndrome-coronavirus-2 spike (S) protein based vaccine candidates: State of the art and future prospects. Rev Med Virol. 2021[cited 20/01/2022];31(3):e 2183. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646037/
4. Tripathi NK, Shrivastava A. Recent Developments in Recombinant Protein-Based Dengue Vaccines. Front Immunol.2018.[cited 20/01/2022];9:1919 . Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC6115509/pdf/fimmu-09-01919.pdf
5.Centers for Disease Control
and Prevention (CDCJ).Johnson & Johnson's Janssen COVID-19 vaccine & Johnson. [cited 20/01/2022]. Available at: https://stacks.cdc.gov/view/cdc/106729
6. Centers for Disease Control
and Prevention .Food and Drug Administration, FDA Maryland 2022 [updated April 13, 2021; accessed January 25, 2022]. Joint CDC-FDA Statement on Johnson & Johnson COVID-19 Vaccine. [cited 20/01/2022] Available at: https://stacks.cdc.gov/view/cdc/105057
7. Tan CW, Chia WN, Qin X, Liu P, Chen MI, Tiu C, et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat Biotechnol. 2020[cited 20/01/2022];38 (9):1073-78. Available at : https://www.nature.com/articles/s41587-020-0631-z
8. Chang Monteagudo A, Ochoa Azze R, Climent Ruiz Y, Macías Abraham C, Rodríguez Noda L, Valenzuela-Silva C, et al. A single dose of 100 ng / ml RNA in rats was compared with a placebo - controlled trial of 100 ng / ml RNA in rats . SARS-CoV-2 FINLAY-FR-1A vaccine enhances neutralization response in COVID-19 convalescents, with a very good safety profile: An open-label phase 1 clinical trial. Lancet Reg Health Am. 2021. [cited 20/01/2022]; 4: 100079. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC8442527/pdf/main.pdf
9.World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013 [cited 20/01/2022];310(20):2191-4. Available at: https://pubmed.ncbi.nlm.nih.gov/24141714/
10.Cuba. Center for State Control of Medicines, Equipment and Medical Devices (CECMED). Regulation 165-2000: Good Clinical Practices in Cuba. 2016. [cited 20/01/2022] Available at: https://www.cecmed.cu/sites/default/files/adjuntos/Reglamentacion/Res_MINSAP-165-00.pdf
11.The European Agency for the Evaluation of Medical Products. Guideline for good clinical practice. ICH Harmonized tripartite guideline . London: EMEA 2002. [cited 20/01/2022] Available at: https://ancei.es/wp-content/uploads/2019/10/Normas-Buena-Practica-Clinica_EMA-2002.pdf
12.NIH. National Cancer Institute (NCI).Bethesda,MD:NIH; [cited 20/01/2022]. Criterios Terminológicos Comunes para los Eventos Adversos (CTCAE);2020 [aprox. 3 pantallas]. Available at: https://ctep-cancer-gov.translate.goog/protocoldevelopment/electronic_applications/ctc.htm?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc
13.Sagaró del Campo NM, Zamora Matamoros L, Valdés García L, Rodríguez Valdés A, Bandera Jiménez D, Texidor Garzón M. Aspectos demográficos, clínico-epidemiológicos y geoespaciales de la COVID-19 en Santiago de Cuba. Arch méd Camagüey. 2021 [consulted: 20/01/2022]; 25 (3): e7979 . Available at:https://revistaamc.sld.cu/index.php/amc/article/view/7979
14. Cuba. Ministry of Public Health. Directorate of Medical Records and Health Statistics. Health Statistical Yearbook. Havana: Directorate of Medical Records and Health Statistics; 2022 [cited 20/01/2022]. Available at: https://files.sld.cu/dne/files/2023/10/Anuario-Estadistico-de-Salud-2022-Ed-20231.pdf
15.Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev. 2021. [cited 20/01/2022]; 170:71 -82. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC7788321/pdf/main.pdf
16. Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022. [cited 20/01/2022]; 28(2):202-221. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC8548286/pdf/main.pdf
17.Toledo Romani ME, García Carmenate M, Valenzuela Silva C, Baldoquin Rodríguez W, Martínez Pérez M, Rodríguez González M, et al. Safety and efficacy of the two doses conjugated protein-based SOBERANA-02 COVID-19 vaccine and of a heterologous three-dose combination with SOBERANA-Plus: a double-blind, randomized , placebo-controlled phase 3 clinical trial. Lancet Reg Health Am. 2023 [cited 20/01/2022];18:100423 . Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC9803910/pdf/main.pdf
18.Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev. 2022. [cited 20/01/2022];11(11):CD013652. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC7387103/pdf/CD013652.pdf
19.Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY, Bloom JD. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe. 2021 [cited 20/01/2022] ;29(3):463-476. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC7869748/pdf/main.pdf
20.Hernández Bernal F, Ricardo Cobas MC, Martín Bauta Y, Navarro Rodríguez Z, Piñera Martínez M, Quintana Guerra J, et al. Safety, tolerability, and immunogenicity of a SARS-CoV-2 recombinant spike RBD protein vaccine: A randomized , double-blind, placebo-controlled, phase 1-2 clinical trial (ABDALA Study). eClinicalMedicine . 2022. [cited 20/01/2022];46:101383. Available at: https://www.thelancet.com/action/showPdf?pii=S2589-5370%2822%2900113-4
21.Toledo Romani ME, García Carmenate M, Verdecia Sánchez L, Pérez Rodríguez S, Rodriguez González M, Valenzuela Silva C, et al . Safety and immunogenicity of anti-SARS-CoV-2 heterologous scheme with SOBERANA 02 and SOBERANA Plus vaccines: Phase IIb clinical trial in adults. Med. 2022. [cited 20/01/2023] ;3 (11):760-773. Available at: https://ediciones.finlay.edu.cu/wp-content/uploads/2023/07/02-Soberana-02-y-Plus-phase-IIb-Safety-and-immunogenicity-of-anti-SARS-CoV-2-1.pdf
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 MEDISAN

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta revista provee acceso libre e inmediato a su contenido bajo el principio de que hacer disponible gratuitamente investigación al público, apoya aún más el intercambio de conocimiento global. Esto significa que los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia internacional Creative Commons Atribución 4.0 que permite copiar y redistribuir el material en cualquier medio o formato para cualquier propósito, incluso comercialmente, además de remezclar, transformar y construir a partir del material para cualquier propósito.