Factores asociados al fracaso de las terapias neuroprotectoras en fase clínica en modelos animales con isquemia cerebral

Javier Enrique Almenares Rosales, Amanda Moya Gómez, Lena Pérez Font

Texto completo:

XML PDF HTML

Resumen

Los accidentes cerebrovasculares se han mantenido, a nivel mundial, como la tercera causa de muerte y la primera de discapacidad. Para disminuir la incidencia de casos de isquemia o hemorragia cerebral, así como sus consecuencias, se deben poseer los conocimientos sobre dichas entidades clínicas, los factores de riesgo asociados y las alternativas preventivas y terapéuticas como estrategias neuroprotectoras. Muchas de las intervenciones médicas realizadas hasta la fecha en modelos animales han resultado insatisfactorias en la fase clínica. Por ello, se realizó una revisión de las publicaciones más recientes donde se abordan los modelos experimentales para la isquemia cerebral más utilizados en las evaluaciones de las terapias neuroprotectoras, y se pudo concluir que si se analizan los protocolos empleados en la fase preclínica podrán optimizarse las investigaciones para lograr resultados más acertados en este campo. 

Palabras clave

accidentes cerebrovasculares; isquemia cerebral; fármacos neuroprotectores; modelos animales; factores de riesgo.

Referencias

Wang P, Lu Y, Han D, Wang P, Ren L, Bi J, et al. Neuroprotection by nicotinamide mononucleotide adenylyltransferase 1 with involvement of autophagy in an aged rat model of transient cerebral ischemia and. Brain Research. 2019 [citado 20/10/2020];1723. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0006899319304457?via%3Dihub

Buergo Zuaznabar MA, Fernández Concepción O. Guías de práctica Clínica. Enfermedad cerebrovascular. La Habana: Editorial Ciencias Médicas; 2009 [citado 12/06/2020]. Disponible en: https://files.sld.cu/enfermedadcerebrovascular/files/2011/06/guias-practica-clinica-ecv-cuba.pdf

Prieto R, Moreno Á, Simal P, Pascual JM, Matías-Guiu J, Roda JM, et al. Modelos experimentales de isquemia cerebral. Rev Neurol. 2008;47(08):414-26.

Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 2015;9:3445–54.

Ma R, Xie Q, Li Y, Chen Z, Ren M, Chen H, et al. Animal models of cerebral ischemia: A review. Biomed Pharmacother. 2020 [citado 20/10/2020];131:110686. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0753332220308799

Matthias CL, Codas M, González V. Factores de riesgo cardiovascular en accidente cerebrovascular. Rev Virtual Posgrado. 2016 [citado 06/11/2019];1(1):28–46. Disponible en: http://revista.medicinauni.edu.py/index.php/FM-uni/article/view/11/4

Díez Tejedor E, Del Brutto O, Álvarez Sabín J, Muñoz M, Abiusi G. Classification of the cerebrovascular diseases. Iberoamerican Cerebrovascular diseases Society. Rev Neurol. 2001;33(5):455-64.

Davis S, Collier L, Goodwin S, Lukins D, Powell D, Pennypacker K. Efficacy of leukemia inhibitory factor as a therapeutic for permanent large vessel stroke differs among aged male and female rats. Brain Res. 2019 [citado 21/06/2019];1707:62-73. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0006899318305754

Shan BS, Mogi M, Iwanami J, Bai HY, Kan-no H, Higaki A, et al. Attenuation of stroke damage by angiotensin II type 2 receptor stimulation via peroxisome proliferator-activated receptor-gamma activation. Hypertens Res. 2018;41(10):839–48.

Zhang H, Sun X, Xie Y, Zan J, Tan W. Isosteviol Sodium Protects Against Permanent Cerebral Ischemia Injury in Mice via Inhibition of NF-κB–Mediated Inflammatory and Apoptotic Responses. J Stroke Cerebrovasc Dis. 2017;26(11):2603–14.

Yuan Y, Zhang Z, Wang Z, Liu J. MiRNA-27b Regulates Angiogenesis by Targeting AMPK in Mouse Ischemic Stroke Model. Neuroscience. 2019;398:12–22.

Villalba H, Shah K, Albekairi TH, Sifat AE, Vaidya B, Abbruscato TJ. Potential role of myo-inositol to improve ischemic stroke outcome in diabetic mouse. Brain Res. 2018 [citado 26/10/2020];1699:166–76. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0006899318304499?via%3Dihub

Dhanesha N, Vázquez-Rosa E, Cintrón-Pérez CJ, Thedens D, Kort AJ, Chuong V, et al. Treatment with Uric Acid Reduces Infarct and Improves Neurologic Function in Female Mice After Transient Cerebral Ischemia. J Stroke Cerebrovasc Dis. 2018 [citado 21/10/2020];27(5):1412–6. Disponible en: https://www.strokejournal.org/article/S1052-3057(17)30717-6/fulltext

Abbasi Y, Shabani R, Mousavizadeh K, Soleimani M, Mehdizadeh M. Neuroprotective effect of ethanol and Modafinil on focal cerebral ischemia in rats. Metab Brain Dis. 2019 [citado 28/10/2020];34(3):805–19. Disponible en: https://link.springer.com/article/10.1007/s11011-018-0378-0

Dou Z, Rong X, Zhao E, Zhang L, Lv Y. Neuroprotection of resveratrol against focal cerebral ischemia/reperfusion injury in mice through a mechanism targeting gut-brain axis. Cell Mol Neurobiol. 2019 [citado 28/10/2020];39(6):883–98. Disponible en: https://doi.org/10.1007/s10571-019-00687-3

Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke. 2016 [citado 12/06/2020];47(2):498–504. Disponible en: https://www.ahajournals.org/doi/10.1161/STROKEAHA.115.012079

Wang ML, Zhang LX, Wei JJ, Li LL, Zhong WZ, Lin XJ, et al. Granulocyte colony-stimulating factor and stromal cell-derived factor-1 combination therapy: A more effective treatment for cerebral ischemic stroke. Int J Stroke. 2020 [citado 20/10/2020];15(7):743–54. Disponible en: http://journals.sagepub.com/doi/10.1177/1747493019879666

Etehadi S, Azami Tameh A, Vahidinia Z, Atlasi MA, Hassani Bafrani H, Naderian H. Neuroprotective effects of oxytocin hormone after an experimental stroke model and the possible role of calpain-1. J Stroke Cerebrovasc Dis. 2018 [citado 13/06/2019];27(3):724-32. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1052305717305712

Beard DJ, Li Z, Schneider AM, Couch Y, Cipolla MJ, Buchan AM. Rapamycin induces an eNOS (endothelial nitric oxide synthase) dependent increase in brain collateral perfusion in Wistar and spontaneously hypertensive rats. Stroke. 2020 [citado 23/10/2020];51(9):2834–43. Disponible en: https://www.ahajournals.org/doi/10.1161/STROKEAHA.120.029781

Juenemann M, Braun T, Schleicher N, Yeniguen M, Schramm P, Gerriets T, et al. Neuroprotective mechanisms of erythropoietin in a rat stroke model. Transl Neurosci. 2020 [citado 20/10/2020];11(1):48–59. Disponible en: https://doi.org/10.1515/tnsci-2020-0008

Nakajima M, Nito C, Sowa K, Suda S, Nishiyama Y, Nakamura-Takahashi A, et al. Mesenchymal Stem Cells Overexpressing Interleukin-10 Promote Neuroprotection in Experimental Acute Ischemic Stroke. Mol Ther-Methods Clin Dev. 2017 [citado 01/10/2020];6:102–11. Disponible en: http://dx.doi.org/10.1016/j. omtm.2017.06.005

Eldahshan W, Ishrat T, Pillai B, Sayed MA, Alwhaibi A, Fouda AY, et al. Angiotensin II type 2 receptor stimulation with compound 21 improves neurological function after stroke in female rats: a pilot study. Am J Physiol Circ Physiol. 2019 [citado 26/05/2020];316(5):1192–201. Disponible en: https://www.physiology.org/doi/10.1152/ajpheart.00446.2018

Chan SL, Bishop N, Li Z, Cipolla MJ. Inhibition of PAI (plasminogen activator inhibitor)-1 improves brain collateral perfusion and injury after acute ischemic stroke in aged hypertensive rats. Stroke. 2018 [citado 23/10/2020];49(8):1969–76. Disponible en: https://www.ahajournals.org/doi/10.1161/STROKEAHA.118.022056

Xin H, Katakowski M, Wang F, Qian JY, Liu XS, Ali MM, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke. 2017 [citado 23/10/2020];48(5):747–53. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330787/

Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017 [citado 23/10/2020];133(2):245–61. Disponible en: http://link.springer.com/10.1007/s00401-017-1667-0

Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, et al. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. J Neurosci. 2016 [citado 23/10/2020];36(28):7428–40. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/27413153

Freitas-Andrade M, Bechberger JF, MacVicar BA, Viau V, Naus CC. Pannexin 1 knockout and blockade reduces ischemic stroke injury in female but not in male mice. Oncotarget. 2017 [citado 21/10/2020];8(23):36973–83. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514885/

Jiang X, Suenaga J, Pu H, Wei Z, Smith AD, Hu X, et al. Post-stroke administration of omega-3 polyunsaturated fatty acids promotes neurovascular restoration after ischemic stroke in mice: Efficacy declines with aging. Neurobiol Dis. 2019 [citado 23/10/2020];126:62–75. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0969996118305734

Pradillo JM, Murray KN, Coutts GA, Moraga A, Oroz-Gonjar F, Boutin H, et al. Reparative effects of interleukin-1 receptor antagonist in young and aged/co-morbid rodents after cerebral ischemia. Brain Behav Immun. 2017 [citado 23/10/2020];61:117–26. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0889159116305153

Bennion DM, Jones CH, Donnangelo LL, Graham JT, Isenberg JD, Dang AN, et al. Neuroprotection by post-stroke administration of an oral formulation of angiotensin-(1-7) in ischaemic stroke. Exp Physiol. 2018 [citado 13/06/2019];103(6):916-23. Disponible en: https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/EP086957

Selvamani A, Sohrabji F. Mir363-3p improves ischemic stroke outcomes in female but not male rats. Neurochem Int. 2017 [citado 23/10/2020];107:168-81. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398946/#__ffn_sectitle

Pérez L, Marañón M, Kemps H. Non-pulsed sinusoidal electromagnetic field rescues animals from severe ischemic stroke via NO activation. Front Neurosci. 2019 [citado 21/06/2019];13:561. Disponible en: https://www.frontiersin.org/article/10.3389/fnins.2019.00561/full

Abdel-latif RG, Heeba GH, Taye A, Khalifa MMA. Lixisenatide, a novel GLP-1 analog, protects against cerebral ischemia/reperfusion injury in diabetic rats. Naunyn Schmiedebergs Arch Pharmacol. 2018 [citado 28/10/2020];391(7):705–17. Disponible en: https://doi.org/10.1007/s00210-018-1497-1

Li M, Li H, Fang F, Deng X, Ma S. Astragaloside IV attenuates cognitive impairments induced by transient cerebral ischemia and reperfusion in mice via anti-inflammatory mechanisms. Neurosci Lett. 2017 [citado 28/10/2020];639:114-9. Disponible en: http://dx.doi.org/10.1016/j.neulet.2016.12.046

Rodrigues FTS, de Sousa CNS, Ximenes NC, Almeida AB, Cabral LM, Patrocínio CFV, et al. Effects of standard ethanolic extract from Erythrina velutina in acute cerebral ischemia in mice. Biomed Pharmacother. 2017 [citado 23/10/2020];96:1230–9. Disponible en: http://dx.doi.org/10.1016/j.biopha.2017.11.093

Zhang S, Wang Y, Li D, Wu J, Si W, Wu Y. Necrostatin-1 Attenuates Inflammatory Response and Improves Cognitive Function in Chronic Ischemic Stroke Mice. Medicines. 2016 [citado 23/10/2020];3(3):16. Disponible en: https://www.mdpi.com/2305-6320/3/3/16

Casals JB, Pieri NCG, Feitosa MLT, Ercolin ACM, Roballo KCS, Barreto RSN, et al. The use of animal models for stroke research: A review. Comparative Medicine. 2011;61:305–13.

Okahara A, Koga J ichiro, Matoba T, Fujiwara M, Tokutome M, Ikeda G, et al. Simultaneous targeting of mitochondria and monocytes enhances neuroprotection against ischemia–reperfusion injury. Sci Rep. 2020 [citado 05/06/2020];10(1). Disponible en: https://www.nature.com/articles/s41598-020-71326-x.pdf

Sutherland BA, Minnerup J, Balami JS, Arba F, Buchan AM, Kleinschnitz C. Neuroprotection for Ischaemic Stroke: Translation from the Bench to the Bedside. Int J Stroke. 2012 [citado 30/05/2019];7(5):407–18. Disponible en: http://journals.sagepub.com/doi/10.1111/j.1747-4949.2012.00770.x

Yang W, Paschen W. Is age a key factor contributing to the disparity between success of neuroprotective strategies in young animals and limited success in elderly stroke patients? Focus on protein homeostasis. J Cereb Blood Flow Metab. 2017 [citado 23/10/2020];37(10):3318–24. Disponible en: http://journals.sagepub.com/doi/10.1177/0271678X17723783

Zhang H, Lin S, Chen X, Gu L, Zhu X, Zhang Y, et al. The effect of age, sex and strains on the performance and outcome in animal models of stroke. Neurochemistry International. 2019 [citado 19/05/2020];127:2–11. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0197018618304017

Simpkins JW, Yang SH, Wen Y, Singh M. Estrogens, progestins, menopause and neurodegeneration: Basic and clinical studies. Cellular and Molecular Life Sciences. 2005;62:271-80.

Lebesgue D, Chevaleyre V, Zukin RS, Etgen AM. Estradiol rescues neurons from global ischemia-induced cell death: Multiple cellular pathways of neuroprotection. Steroids. 2009 [citado 16/10/2020];74(7):555–61. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029071/#__ffn_sectitle

Aliena-Valero A, López-Morales MA, Burguete MC, Hervás D, Torregrosa G, Leira EC, et al. Emergent uric acid treatment is synergistic with mechanical recanalization in improving stroke outcomes in male and female rats. Neuroscience. 2018 [citado 23/10/2020];388:263-73. Disponible en: https://doi.org/10.1016/j.neuroscience.2018.07.045

Chen Y-J, Nguyen HM, Cui Y, Wulff H. Kv1.3 Constitutes a valid target for reducing neuroinflammation in the wake of ischemic stroke in male, female and aged mice. FASEB J. 2020 [citado 15/10/2020];34(S1):1–1. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.2020.34.s1.03005

Angulo MTS, López MS, Castro ED, Villavicencio LLF, Emiliano JR. Y Ortíz, MSS. Ciclo estral del ratón hembra intacto y ovariectomizado. Acta Universitaria. 2012 [citado 16/09/2020];22(2):5-8. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=3936623

Matthias CL, Codas M, González V. Factores de riesgo cardiovascular en accidente cerebrovascular. Rev Virtual Posgrado. 2016 [citado 16/11/2019];1(1):28–46. Disponible en: http://revista.medicinauni.edu.py/index.php/FM-uni/article/view/11/4

Castañeda C VA. Factores de riesgo cardiovascular en síndrome metabólico TT - Cardiovascular risk factors in metabolic syndrome. Rev Med Interna. 2013 [citado 23/10/2020];17(Suppl 1):s24–9. Disponible en: http://bibliomed.usac.edu.gt/revistas/revmedi/2013/17/S1/05

Núñez Y, Tillán Capó J, Bueno Pavón V, Carrillo Domínguez C, Jiménez Alemán NM, Valdés Martínez O. Estandarización de un modelo de isquemia por oclusión de la arteria cerebral media en ratas. Lat Am J Pharm. 2009 [citado 23/10/2020];28(1):47-54. Disponible en: https://www.researchgate.net/publication/232715512_Estandarizacion_de_un_Modelo_de_Isquemia_por_Oclusion_de_la_Arteria_Cerebral_Media_en_Ratas/download

Cutiño Y, Rojas JO, Sánchez A, López J, Verdecia R, Herrera D. Characterization of ictus in the long-lived patient: A decade of study. Rev Finlay. 2016 [citado 06/11/2019];6(3):239-45. Disponible en: http://scielo.sld.cu/pdf/rf/v6n3/rf07306.pdf





Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.