Monitorización del dióxido de carbono espirado durante la ventilación no invasiva en pacientes con enfermedad pulmonar obstructiva crónica agudizada
Resumen
Introducción: La monitorización del dióxido de carbono espirado se utiliza con frecuencia en las unidades de cuidados intensivos, pero su empleo en ventilación no invasiva es escaso.
Objetivo: Identificar la asociación entre la presión arterial de dióxido de carbono y el dióxido de carbono espirado, durante la ventilación no invasiva, en pacientes con enfermedad pulmonar obstructiva crónica agudizada.
Métodos: Se realizó un estudio observacional, descriptivo, longitudinal y prospectivo de 126 pacientes ingresados con enfermedad pulmonar obstructiva crónica agudizada, tratados con ventilación no invasiva en la Unidad de Cuidados Intensivos del Hospital Provincial Clínico-Quirúrgico Docente Saturnino Lora Torres de Santiago de Cuba, desde enero de 2019 hasta igual mes de 2022, seleccionados por muestreo intencional no probabilístico. Se analizaron variables clínicas, ventilatorias y hemogasométricas, de las cuales se identificaron los valores mínimo y máximo, así como la media, la desviación estándar y la mediana. Se aplicó el coeficiente de correlación de Pearson.
Resultados: Los valores promedio de dióxido de carbono espirado fueron 57,83+8,9 y los de presión arterial de dióxido de carbono, de 59,85+9,3. Al analizar la correlación entre las variables se observó correlación positiva entre ambas, para un coeficiente de correlación de Pearson de 0,920.
Conclusiones: La monitorización del dióxido de carbono espirado se erige como una variable a considerar en la monitorización de los pacientes con enfermedad pulmonar obstructiva crónica agudizada, tratados con ventilación no invasiva, siempre que se utilice la máscara facial adecuada y se controlen las fugas, con fuerte correlación con la presión arterial del dióxido de carbono.Palabras clave
Referencias
Yao JJ, Meng PM, Zou G H, He KX, Ma DD. Effects of flow on carbon dioxide washout and nasal airway pressure in healthy adult volunteers during the constant-flow mode in a non-invasive ventilator. Chin Med J. 2020 [citado 09/03/2022];133(20):2515-17. Disponible en: https://medcentral.net/doi/epdf/10.1097/CM9.0000000000001079
Díaz Cedeño HI, Monroy Pesantez MF, Macías Ponce D I, Tuarez Villegas IL. Utilidad de la capnografía en urgencias. RECIMUNDO. 2019 [citado 15/03/2022];3(3): 218-38. Disponible en: https://recimundo.com/index.php/es/article/view/598
Borsini E, Codinardo C, Rabec C. Monitoreo de la ventilación no invasiva. RAMR 2021 [citado 15/03/2022];1:83-93 Disponible en: http://www.ramr.org/articulos/volumen_21_numero_1/suplemento_guias/capitulo_10.pdf
Benites Albanese MH, Poblete Barrera F, Céspedes Valenzuela RC, Gil D, Riquelme C, Olive F, et al. Capnografía volumétrica y su aplicación en la monitorización de la ventilación mecánica. Rev Chil Med Intens. 2019 [citado 15/03/2022]; 34(3):1-10. Disponible en: https://www.medicina-intensiva.cl/revista/pdf/2.pdf
Núñez García V. Caracterización del aporte de las compresiones torácicas al valor de CO2 espirado final durante la reanimación cardiopulmonar. [Tesis Maestría] Universidad del País Vasco, 2021 [citado 15/03/2022]. Disponible en: https://addi.ehu.es/handle/10810/52712?show=full
Caro Alonso PA, Rodríguez Martín B. El dióxido de carbono al final de la espiración como signo precoz y valor pronóstico de la recuperación de la circulación espontánea en la parada cardiaca extrahospitalaria. Una revisión sistemática. Rev. Esp. Salud Pública. 2021 [citado 15/03/2022];95(1). Disponible en: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1135-57272021000100186
Rabec CA, Reybet Degata O, Bonniaud P, Fanton A, Camus P. Monitorización de las fugas en ventilación no invasiva. Arch Bronconeumol. 2004 [citado 09/03/2022];40(11):508-17. Disponible en: https://www.archbronconeumol.org/es-monitorizacion-fugas-ventilacion-no-invasiva-articulo-resumen-S0300289604755829
Bernabe Vera L. ¿Cuál es la relación entre el volumen tidal espiratorio medio y la tasa de aclaramiento de pCO2 en los pacientes sometidos a ventilación mecánica no invasiva? [Tesis Doctoral]. Murcia: Universidad Miguel Hernández; 2017 [citado 20/02/2022]. Disponible en: http://dspace.umh.es/jspui/bitstream/11000/4344/1/BERNABE%20VERA%2c%20LORENA%20.pdf
Sánchez Vallejo A. Aproximación a la ventilación mecánica. Monitorización de la asistencia ventilatoria. Tiempos de Enfermedad y Salud. 2019 [citado 20/02/2022]; 1(5). Disponible en: https://tiemposdeenfermeriaysalud.es/journal/article/view/20
Ergan B, Oczkowski S, Rochwerg B, Carlucc A, Chatwin M, Clini, E, et al. European Respiratory Society guidelines on long-term home non-invasive ventilation for management of COPD. Eur Respir J. 2019 [citado 09/03/2022]; 54. Disponible en: https://erj.ersjournals.com/content/erj/54/3/1901003.full.pdf
Nuccio P, Hochstetler G, Jackson M. End-tidal CO 2 measurements with noninvasive ventilation. In: Abstracts presented at the International Symposium “Innovations and applications of monitoring oxygenation and ventilation” (ISIAMOV), Duke University, Durham, NC, March 15–17, 2007. Anesth Analg. 2007 [citado 09/03/2022];105(6):111-5. Disponible en: https://journals.lww.com/anesthesia-analgesia/Citation/2007/12001/Abstracts_Presented_at_the_International_Symposium.16.aspx
Sakuraya M, Douno E, Iwata W, Takaba A, Hadama K, Kawamura N. Accuracy evaluation of mainstream and sidestream end-tidal carbon dioxide monitoring during noninvasive ventilation: a randomized crossover trial (MASCAT-NIV trial). J Intensive Care. 2022 [citado 09/03/2022];10(1):17. Disponible en: https://jintensivecare.biomedcentral.com/track/pdf/10.1186/s40560-022-00603-w.pdf
Esquinas AM. Noninvasive Mechanical Ventilation: Theory, Equipment, and Clinical Applications. 2 ed. Switzerland: Springer International Publishing; 2016 [citado 06/04/2022].p.851. Disponible en: https://link.springer.com/book/10.1007/978-3-319-21653-9
Enfermedad Pulmonar Obstructiva Crónica (EPOC) GOLD 2020, GESEPOC 2021; 2021 [citado 04/03/2022]. Disponible en: https://1aria.com/images/entry-pdfs/epoc-2021-gold-2020-gesepoc-2021.pdf
Schwarz SB, Windisch W, Magnet FS, Schmoor C, Karagiannidis Ch, Callegari J, et al. Continuous non-invasive PCO2 monitoring in weaning patients: transcutaneous is advantageous over end-tidal PCO2. Respirology. 2017 [citado 09/03/2022]; 22(8): 1579-84. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28613389/
Van der Leest, S, Duiverman ML. High-intensity non-invasive ventilation in stable hypercapnic COPD: Evidence of efficacy and practical advice. Respirology. 2019 [citado 09/03/2022];24:318–28. Disponible en: https://onlinelibrary.wiley.com/doi/pdf/10.1111/resp.13450
Baba Y, Takatori F, Masayuki Inoue M, Matsubara I. A Novel Mainstream Capnometer System for Non-invasive Positive Pressure Ventilation. Annu Int Conf IEEE Eng Med Biol Soc. 2020 [citado 09/03/2022];2020: 4446-9. Disponible en: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9175950
Borel JCh, Palot A, Patout M. Technological advances in home non-invasive ventilation monitoring: Reliability of data and effect on patient outcomes. Respirology, 2019 [citado 09/03/2022]; 24(12), 1143–51. Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/resp.13497
Radogna AV, Siciliano PA, Sabina S, Sabato E, Capone S. A low-cost breath analyzer module in domiciliary non-invasive mechanical ventilation for remote COPD patient monitoring. Sensors. 2020. [citado 09/03/2022]; 20(3), 653. Disponible en: https://www.mdpi.com/1424-8220/20/3/653
Aarrestad S. Monitoring long-term nocturnal non-invasive ventilation for chronic hypercapnic respiratory failure: What are the basic tools? 2020. [Tesis. University of Oslo]. [citado 09/03/2022] Disponible en: https://www.duo.uio.no/handle/10852/74185
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.