Dinámica contráctil espontánea del músculo liso vascular de la arteria carótida externa

Oscar Rodríguez Reyes, Thomas K. Noack, Robert Patejdl, Ramón Enrique García Rodríguez

Texto completo:

XML PDF HTML

Resumen

Introducción: La carótida externa es una arteria muscular que irriga todos los componentes del sistema masticatorio, por lo que la regulación de la dinámica contráctil de su músculo liso vascular es imprescindible para garantizar el tono y el flujo sanguíneo tisular y modular la respuesta inflamatoria.

Objetivo: Describir la dinámica contráctil espontánea del musculo liso vascular de la arteria carótida externa.

Métodos: Se realizó una investigación experimental en el Instituto de Fisiología Oscar Langerdorff de la Facultad de Medicina, en la Universidad de Rostock, Alemania, de octubre a diciembre del 2018, en la cual se utilizaron 60 anillos de arterias carótidas externas obtenidas de 10 ratas Wistar adultas de ambos sexos. A dichos anillos se les practicó un corte helicoidal y fueron colocados en un baño de órganos, para registrarles, luego, la tensión espontánea desarrollada por el músculo liso vascular contra una carga de 1 gramo, durante diferentes intervalos de tiempo.

Resultados: Los registros de la actividad contracción-relajación espontánea del músculo liso vascular de la arteria carótida externa fluctuaron dentro de un rango estrecho de cifras de tensión, con valores máximos de 8,48 ± 0,03 y mínimos de 8,33 ± 0,03, y una diferencia de 0,08 mN/g de músculo. Los valores promedios de tensión en cada intervalo de tiempo fueron muy cercanos, con desviaciones estándar que evidenciaron muy poca dispersión de los datos respecto a la media. La tensión promedio general registrada fue de 8,40 ± 0,032 mN/g.

Conclusiones: La dinámica contráctil espontánea desarrollada por el músculo liso vascular de la arteria carótida externa mostró una progresión irregular en el tiempo, con valores promedios de tensión que oscilaron entre 5-10 mN/g de músculo.

Palabras clave

arteria carótida externa; músculo liso vascular; dinámica contráctil; ratas Wistar.

Referencias

Consolini AE, Colareda GA. Farmacodinamia del músculo liso en general y gastrointestinal. En: Consolini AE, Ragone MI. Farmacodinamia general e interacciones medicamentosas. Mecanismo de acción de fármacos y metodología de estudio experimental. Buenos Aires: Editorial Universidad de La Plata; 2017 [citado 10/11/2019]. Disponible en: http://sedici.unlp.edu.ar/bitstream/handle/10915/67056/Documento_completo__.pdf?sequence=1#page=64

García Carrillo M, García Santos JM, Franulic Guggiana M, Sánchez Jiménez S, Moreno Pastor A, Solano Romero AP. La gran olvidada: arteria carótida externa. Madrid: Sociedad Española de Radiología Médica; 2016.

Campanioni F, Bachá F. Anatomía aplicada a la estomatología. La Habana: Editorial Ciencias Médicas; 2012. p. 119.

Canalda C. Medicación intraconducto. En: Canalda C, Brau E. Endodoncia. Técnicas clínicas y bases científicas. Madrid: Masson; 2014. p. 184-93.

Martin P. Farmacodinamia del músculo liso vascular. En: Consolini AE, Ragone MI. Farmacodinamia general e interacciones medicamentosas. Mecanismo de acción de fármacos y metodología de estudio experimental. Buenos Aires: Editorial Universidad de La Plata; 2017 [citado 12/11/2019]. Disponible en: http://sedici.unlp.edu.ar/bitstream/handle/10915/67056/Documento_completo__.pdf?sequence=1#page=64

Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Phamarcology Rewiew. 2016;68(2):476-532.

Brunton L, Chabner B, Knollman B. Goodman & Gilman. Las bases farmacológicas de la terapéutica. 12 ed. Buenos Aires: McGraw-Hill Interamericana; 2012.

Renna NF, Miatello MR. Fisiología del músculo liso vascular. En: Hipertensión arterial: epidemiología, fisiología, fisiopatología, diagnóstico y terapéutica. Buenos Aires: Inter-Médica; 2013. p. 172-5 [citado 15/11/2019]. Disponible en http://www.saha.org.ar/pdf/libro/Cap.036.pdf

Porras González C. Implicación de los canales de Ca2+ tipo L y RhoA/Rho quinasa en el incremento del tono vascular inducido por la despolarización mantenida: posible papel en la hipertensión arterial [tesis doctoral]. Sevilla: Universidad de Sevilla; 2017 [citado 10/12/2019]. Disponible en: https://idus.us.es/bitstream/handle/11441/64018/Tesis_CPG_08050217.pdf?sequence=1&isAllowed=y

Navarro Dorado J. Estudio de los mecanismos contráctiles de la musculatura lisa vascular en arterias mesentéricas humanas y su modificación por el envejecimiento: papel del retículo sarcoplásmico [tesis doctoral]. Madrid: Universidad Complutense de Madrid; 2013 [citado 10/12/2019]. Disponible en: https://eprints.ucm.es/23578/

Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochemical Pharmacology. 2018 Jul [citado 22/02/2020];153(7). Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0006295218300698

Syed AU, Le T, Navedo MF, Cintrón N. Ion channels and their regulation in vascular mooth muscle. En: Basic and Clinical Understanding. Londres: IntechOpen; 2019. Disponible en: https://www.intechopen.com/online-first/ion-channels-and-their-regulation-in-vascular-smooth-muscle

Cui Y, Gollasch M, Kassman M. Señalización elemental de calico en el músculo liso vascular. Diario Canales. 2019 [citado 22/02/2020];13(1):505-19. Disponible en: https://www.tandfonline.com/doi/full/10.1080/19336950.2019.1688910

Bacakova L, Travnickova M, Filova E, Matejka R, Stepanovska J, Musilkova J, et al. The role of vascular smooth muscle cells physiology pathophysiology of blood vessels. En: Sakuma K. Muscle cell and tissue current status of research field. Londres: IntechOpen; 2018 [citado 23/02/2020]. Disponible en: https://www.intechopen.com/books/muscle-cell-and-tissue-current-status-of-research-field/the-role-of-vascular-smooth-muscle-cells-in-the-physiology-and-pathophysiology-of-blood-vessels

Ahmed S, Warren DT. Vascular smooth muscle cell contractile function and mechanotransduction. Vessel Plus. 2018 [citado 25/02/2020];2:36. Disponible en: http://dx.doi.org/10.20517/2574-1209.2018.51

Boberg L, Szekeres FLM, Arner A. Signaling and metabolic properties of fast and slow smooth muscle types from mice. Pflügers Archiv - Eur J Physiol. 2018 [citado 25/02/2020];470:681-91. Disponible en: https://doi.org/10.1007/s00424-017-2096-6





Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.