Morphological classification of endothelial cells of veins from the human umbilical cord in digital images of in vitro cultures
Keywords:
morphological analysis, endothelial cells, in vitro culture, angiogenesis.Abstract
A descriptive and cross-sectional study was carried out from July to October, 2017, by specialists of the Oriente University and the University of Sao Paulo, Brazil, to analyze from the morphological point of view endothelial cells of the human umbilical cord veins, which were present in digital images of 2D vitro culture, treated with the β2GPI. The cellular supervised classification was proposed considering 3 classes: circular, distorted elongated and distorted not very elongated, according to the coefficients of elliptic and circular shapes, all that allowed to identify outstanding cellular forms. To compare the results of the control and treated samples, the intervals of confidence were calculated for each of the classes, with a 95% level of confidence. It was concluded that the analysis of the morphological disorders in vitro can be used in early 2D cultures (24 and 48 hours) for the quantification of the angiogenesis.
Downloads
References
2. Chiu WC, Chiou TJ, Chung MJ, Chiang AN. β2-glycoprotein I inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the phosphorylation of extracellular signal-regulated kinase 1/2, Akt, and endothelial nitric oxide synthase. PLoS ONE. 2016 [citado 29 Oct 2017];11(8). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27579889
3. Machado C, Escobedo M, Nigro C, Vass S, Cassia P, Augusto D, et al. Digital image processing assessment of the differential in vitro antiangiogenic effects of dimeric and monomeric beta2-glycoprotein I. J Cytol Histol. 2013 [citado 29 Oct 2017]; 4. Disponible en: https://www.omicsonline.org/digital-image-processing-assessment-of-the-differential-in-vitro-antiangiogenic-effects-of-dimeric-and-monomeric-betaglycoprotein-i-2157-7099.1000187.php?aid=19899
4. De Falco S. Antiangiogenesis therapy: an update after the first decade. Korean J Intern Med. 2014;29(1):1-11.
5. Nok Chiu S, Stoyan D, Kendall W, Mecke J. Stochastic geometry and its applications. New York: John Wiley & Sons; 2013.
6. Fernández K, Herold S, Fernández A, Escobedo M, Coello G, Marrero P. Estudio morfológico en muestras de sangre periférica. La Habana: V Congreso Latinoamericano de Ingeniería Biomédica (CLAIB2011); 2013. p. 543-6.
7. Stehman S. Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment. 1997; 62(1):77-89.
8. Jain R. The art of computer systems performance analysis. New York: Wiley; 1991.
9. Chotard Ghodsnia R, Haddad O, Leyrat A, Drochon A, Verdier C, Duperray A. Morphological analysis of tumor cell/endothelial cell interactions under shear flow. J Biomech. 2007; 40(2):335-44.
10. Angulo J, Matou S. Application of mathematical morphology to the quantification of in vitro endothelial cell organization into tubular-like structures. Cell Mol Biol. 2007; 53(2):22–35.
11. Liu M, Shih H, Wu J, Weng T, Wu C, Lu J, et al. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab Chip. 2013;13(9):1743-53.
Published
How to Cite
Issue
Section
License
All the articles can be downloaded or read for free. The journal does not charge any amount of money to the authors for the reception, edition or the publication of the articles, making the whole process completely free. Medisan has no embargo period and it is published under the license of Creative Commons, International Non Commercial Recognition 4.0, which authorizes the copy, reproduction and the total or partial distribution of the articles in any format or platform, with the conditions of citing the source of information and not to be used for profitable purposes.