Impact of mechatronic in medicine

Authors

  • Elizabeth Larrondo Pons Dirección de Informatización, Universidad de Oriente, Santiago de Cuba
  • Gustavo Cervantes Montero Dirección de Informatización, Universidad de Oriente, Santiago de Cuba
  • Angel Sánchez Roca Facultad de Ingeniería Mecánica e Industrial, Universidad de Oriente, Santiago de Cuba

Keywords:

mechatronic, medical equipment, medical robotics, surgical robot.

Abstract

A literature review was carried out to determine the impact of mechatronic in the health sector. Its development was evaluated from the point of view of different investigators, which has allowed its insertion in this sector. It was also proven that  robotics and digital processing of images and signs have higher incidence in medicine. Also, an analysis of mechatronic applied to this science was carried out, which demonstrated that the surgical and therapeutical areas are the most favored and receive nourishment through innovative techniques that are more reliable and less invasive for the patient. 

Downloads

Download data is not yet available.

References

1. Mori T. Mechatronics. Yasakawa Internal Trademark Application Memo. 1969.

2. Harshama F, Tomizuka M, Fukuda T. Mechatronics. What is it, why, and how? IEEE/ASME Transactions on Mechatronics. 1996; 1 (1): 1-4.

3. Jeong S, Choi H, Lee Ch, Go G, Sim DS, Lim KS, et al. Therapeutic intravascular microrobot through compensation of resistance and mutual inductance in electromagnetic actuation system. International Journal of Control, Automation and Systems. 2015; 13 (6): 1465-75.

4. Cleary K, Melzer A, Watson V, Kronreif G, Stoianovici D. Interventional robotic systems: Applications and technology state-of-the-art. Minim Invasive Ther Allied Technol. 2006; 15 (2): 101–13.

5. Najarian S, Fallahnezhad M, Afshari E. Advances in medical robotic systems with specific applications in surgery—a review. J Med Eng Technol. 2011; 35 (1): 19–33.

6. Li Z, Yang Ch, Burde E. An overview of biomedical robotics and bio-mechatronics systems and applications. IEEE Transactions on systems, man, and cybernetics: Systems. 2016; 46 (7): 1-6.

7. Rojas JS, Escrucería S, Suárez MA, Peña CA. Diseño e implementación de un brazo robótico de bajo costo para la automatización en el proceso de análisis bacteriológico. Revista INGE CUC. 2012; 8 (1): 219-30.

8. Domínguez Castellar RE, Pinilla Brito S. Diseño y simulación de un dispositivo robótico para organizar medicamentos. [Tesis]. Nueva Granada: Universidad Militar Nueva Granada; 2012.

9. Guzmán Valdivia CH, Blanco Ortega A, Oliver Salazar MA. Entendiendo la mecatrónica en la rehabilitación. México: CIINDET; 2013.

10. Huang HP, Liu YH, Lee WCh, Kuan JY, Huang TH. Rehabilitation robotic prostheses for upper extremity. 2015.

11. López Camacho F, Serna Hernández L, Olguín Camacho J. Desarrollo de un exoesqueleto para la rehabilitación de miembros superiores. Revista de Tecnología e Innovación. 2016; 3 (7): 1-12.

12. Bhagat NA, Venkatakrishnan A, Abibullaev B, Artz EJ, Yozbatiran N, Blank AA, et al. Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front Neurosci. 2016 [citado 8 Jul 2017]. Disponible en: https://www.frontiersin.org/articles/10.3389/fnins.2016.00122/full

13. Yasodharan R, Sivabalakrishnan R, Priya K. Study of medical mechatronics. JPSBM. 2014; 2 (11): 52-9.

14. Baldoli I, Cuttano A, Scaramuzzo R, Tognarelli S, Ciantelli M, Cecchi F, et al. A novel simulator for mechanical ventilation in newborns: Mechatronic Respiratory System Simulator for Neonatal Applications. Proc IMechE Part H: J Engineering in Medicine. 2015; 229 (8): 581–91.

15. Adeluyi O, Lee JA. Medical virtual instrumentation for personalized health monitoring: A Systematic Review. Journal of Healthcare Engineering. 2015; 6 (4): 739–77.

16. Huang HP, Liu YH, Lee WC, Kuan JY, Huang TH. Medical mechatronics: Part I - rehabilitation robotic prostheses for upper extremity. Contemporary Issues in System Science and Engineering. EUA: Wiley-IEEE Press; 2015.

17. Jiménez Franco LD. Desarrollo de un sistema basado en una interfaz cerebro computador para controlar dispositivos mecatrónicos de uso médico orientados a pacientes con discapacidad severa. [Tesis]. Medellín: Universidad EAFIT; 2013.

18. Jin J, Sellers EW, Zhang Y, Daly I, Wang X, Cichocki A. Whether generic model works for rapid ERP-based BCI calibration. J Neurosci Methods. 2013; 212 (1): 94-9.

19. Suárez Mora DR, Lancheros Cuesta D, Aguirre Carpeta WY. Sistema HCI basado en el controlador Leap Motion aplicado a la prevención de caries dental. Bogotá: CIIMA; 2015. p. 136-40.

20. Geethanjali P. A mechatronics platform to study prosthetic hand control using EMG signals. Australas Phys Eng Sci Med. 2016; 39 (3): 765-71.

21. Esqueda Elizondo J, Hernández Manzo D, Bermúdez Encarnación E, Jiménez Beristaín L, Pinto Ramos M. Manipulación de un brazo robótico mediante señales electroencefalográficas. Rev Tec Innv. 2016; 3 (7): 89-98.

22. Riillo F, Bagnato C, Allievi AG, Takagi A, Fabrizi L, Saggio G, et al. A simple fMRI compatible robotic stimulator to study the neural mechanisms of touch and pain. Ann Biomed Eng. 2016; 44: 2431-41.

23. Ota R, Yamamoto I, Lawn M, Nagayasu T, Yamasaki N, Matsumoto K. Development of a surgical instrument using an elastic vibration wing mechanism. First International Symposium on Flutter and its Application. JAXA SP. 2016. p. 403-6.

24. Chaparro Velasco MC, Vivas Albán OA. Robótica quirúrgica, desde los grandes asistentes hasta la nanotecnología. Scientia et Technica. 2016; 21 (2): 182-90.

25. Bogue R. Miniature and microrobots: a review of recent developments. Industrial Robot: An International Journal. 2015; 42 (2): 98-102.

26. Beccani M, Tunc H, Taddese A, Susilo E, Volgyesi P, Ledeczi A, et al. Systematic design of medical capsule robots. IEEE Design & Test. 2015; 32 (5): 98-108.

27. Khulbe P. Nanorobots: a review. IJPSR. 2014; 5 (6): 2164-73.

28. Yoshida S, Fukui N, Saito K, Fujii Y, Kageyama Y, Kihara K. Novel image monitoring system using a head-mounted display for assistants in da Vinci surgery. International Journal of Urology. 2015; 22: 520–21.

29. Petrescu RV, Aversa R, Apicella A, Petrescu FI. Future Medicine Services Robotics. AJEAS. 2016; 9 (4): 1062-87.

Published

2018-04-11

How to Cite

1.
Larrondo Pons E, Cervantes Montero G, Sánchez Roca A. Impact of mechatronic in medicine. MEDISAN [Internet]. 2018 Apr. 11 [cited 2025 Jun. 3];22(4). Available from: https://medisan.sld.cu/index.php/san/article/view/2059

Issue

Section

Review articles